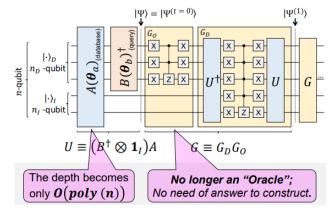

量子データベース検索の実用的実装と画像検索への応用

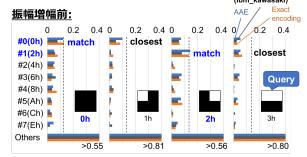
"Grover search revisited: Application to image pattern matching" Physical Review A 105, 032440 (2022).

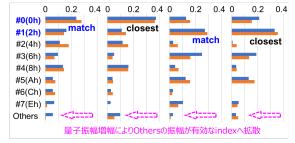
目的	・浅い回路で実装可能かつ効率的なパターンマッチアルゴリズムの構築 ・実問題に適用できるようなGrover's searchアルゴリズムの改良
既存手法 の課題	・データの現実的な生成方法が非自明(e.g., QRAMが必要) ・正答(求めたいindex)を知らないとOracleを構成できないという 根本的な矛盾があり、適用対象が限定的だった
アプローチ	・機械学習を用いて効率的なデータ生成回路を実装することで浅層化を実現 ・部分空間でデータ比較を行うことでOracleを明示的に実装
実験内容	・提案手法にて、量子画像のデータベース検索を実施(一部、実デバイスを使用) ・手書き数字のデータを使用し、エンコード時のノイズの影響を確認
応用先	・複雑/大規模なデータベース検索の高速化(e.g., 画像, DNAシーケンス) ・量子データの検索(i.e., 量子センサからの情報)


問題設定

実機による結果

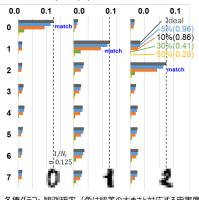
例として、4(=2x2) pixelの画像 8枚で構成された データベース $|\psi\rangle$ に対して、 ρ エリ $|\phi\rangle$ の類似度を算出する。


提案アルゴリズム


要素技術:

- ・概振幅符号化によるデータベース回路、クエリ回路の実装
- ·inversion-testを応用した浅いパターンマッチング回路の実装
- ・Oracleからデータ照合機能を分離することで明示的な実装を実現

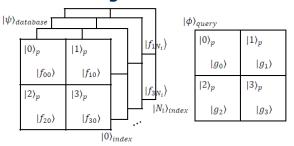
実験結果(抜粋)



振幅増幅後 (t=5):

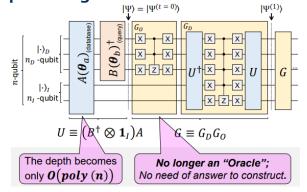
符号化誤差の影響:

基底符号化(NEQR):


- * 各棒グラフ: 観測確率(色は誤差の大きさと対応する忠実度)
- ・想定通りの傾向を観測(類似度に対応した確率分布)
- ・実機では符号化誤差に加え、ノイズの影響あり
- ⇒ 目的に即した符号化と実機の低ノイズ化が必要

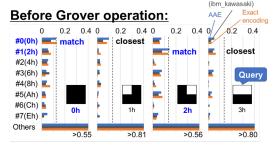
Quantum database search for image pattern matching

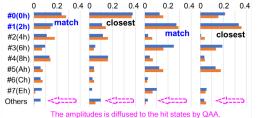
"Grover search revisited: Application to image pattern matching" Physical Review A 105, 032440 (2022).


Purpose	Construction of an efficient pattern matching algorithm implementable with shallow circuits Reconstruction of Grover's search algorithm applicable to practical problem settings
Issue	 Implementation of the data generation circuit is non-trivial (e.g., requiring QRAM) Fundamental contradiction in that the Oracle cannot be constructed without knowing the correct answer (the desired index), limiting its applicability
Approach	 Efficient data generation circuits using machine learning Explicit implementation of the Oracle by performing data comparison in subspaces
Experiment	 Database searches of quantum images using the proposed method (partially utilizing the real device) Verifying the impact of encoding noise using handwritten digit data
Application	·Complex/large-scale database searches (e.g., images, DNA sequences) ·Searching quantum data (i.e., information from quantum sensors)

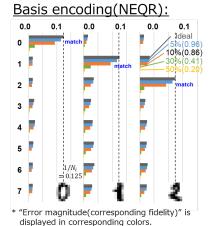
Problem setting

As an example, calculating the similarity of a query $|\phi\rangle$, a 4(=2×2) pixel image, against a database $|\psi\rangle$ composed of 8 images.


Proposed algorithm


Key points:

- Implementation of the database and query circuits by approximate amplitude encoding
- ·Shallow pattern matching circuits by inversion-test
- •Explicit implementation by separating the data matching function from the Oracle


Results(excerpted)

After Grover operation (t=5):

Encoding error:

- ·The algorithm was appropriately verified.
- •For practical use, the lower device noise is expected.